

Process Control: Level

Catalogue Number	3045-0002
Category	Process Control
Duration	15 Hours

Activity 1: Introduction to Level Control

	What is Process Control?
	What is a Control Mechanism?
	What is a Controller?
	Manual and Automatic Level Control Systems
	Example: Chemical Storage Tanks
	Example: Industrial Boiler
	The Need for Controlling Systems
Ac	ctivity 2: ProcessMotion Simulation Software
	ProcessMotion Software
	ProcessMotion Panel
	Simulation Software
	Manipulating the ProcessMotion Panel Display
	Task: Running ProcessMotion and Opening Multiple Displays
	Review of Process Control
	Task: Running an Experiment
	Output Analysis
	Task: Analyzing the Output Graph
	Understanding the Water Pressure Readout
	Experimenting With an Ineffective Controller
	Task: Experimenting With an Ineffective Controller
	Interpreting the Output Graph
	Experimenting With a More Effective Controller
	Task: Experimenting With a More Effective Controller
	Interpreting the Output Graph
	Experimenting With Another Effective Controller

Task: Experimenting with an Effective Controller

Interpreting the Output Graph

Activity 3: Block Diagrams and Gain

Systems and Control Systems Sample Control Systems Block Diagrams Open Loop Control Systems and Gain Testing a Control System Task: Testing a Control System Testing Another Control System

Activity 4: The System Block Diagram and the Final Control Element Gain

Review of Gain ProcessMotion Panel Control System Task: Constructing the Block Diagram of the System The Structure and Functioning of the Pump Final Control Element Gain of the ProcessMotion System Calculating the Final Control Element Gain Task: Determining the Pump Gain Task: Recording the Data Task: Determining the Pump Gain for Different Pump Settings

Activity 5: Calculating System Gain

Review of Gain Process Gain of the ProcessMotion System The Combined Gain of the Pump and Tank System Gain Determining the System Gain Task: Determining the System Gain Task: Recording the Results Task: Changing the Resistance of the Output Valve Control Signal Conclusions System Gain Conclusions

Activity 6: First Order Systems

Steady State Response Dynamic Response The Time Constant First Order Systems First Order System Laplace Transforms Step Inputs First Order System Response to a Step Input Notes on the Time Constant Task: Constructing a Graph of System Response to a Step Input

Activity 7: The Level System Time Constant

Review of the Time Constant The System Order of the Level System Deriving K and Tau for the Level System Analysis of the Steady Response of the Level System Determining the Dynamic Response of a First Order System Task: Measuring the Time Constant of the Level System Experimentally Task: Recording the Data Task: Calculating the Time Constant Analytically tivity 8: Controlling the Level System Using Open Loop Control

Activity 8: Controlling the Level System Using Open Loop Control

Categorizing Control Systems Closed Loop Control Open Loop Control Controlling the Level System Using Open Loop Control Task: Using Open Loop Control to Control the Water Task: Recording the Data Task: Investigating the Effect of an External Load Task: Adjusting the Pump Setting Results and Conclusions

Activity 9: Introduction to On-Off Control

- Open and Closed Loop Control Systems Closed Loop Control Systems
- On-Off Control Algorithm
- Task: Analyzing a Control System
- Applying On-Off Control
- On-Off Control Using Dead Band
- Tolerance

Activity 10: On-Off Control - Tasks

- **On-Off Control**
- Step Inputs
- Task: Step Inputs
- Task: Calculating General System Information
- System Behavior
- Task: Calculating the System Output Over Time
- The Descent of the System Response
- Task: Plotting the System Descent
- Investigating the Effects of Changing the Dead Band
- Task: Investigating the Effects of Changing the Dead Band

Activity 11: Controlling the Level System Using On-Off Control

Review of Open Loop Control of the Level System On-Off Control of the Level System Task: Controlling the Level System Using On-Off Control Analysis of the System Output Task: Analysis of the Output Graph Task: Completing the Experiment Analysis of the Experiment Results Task: Investigating the Effect of an External Load

Activity 12: Proportional Control

Proportional Control Algorithm Saturation Proportional Band Steady State System Characteristics Under Proportional Control Dynamic System Characteristics Under Proportional Control

Activity 13: First Order Systems Under Proportional Control

Review of Proportional Control

System Response to a Step Input

Task: Calculating Time Values

Task: Calculating the System Output for Kc = 0.5

Task: Calculating the System Output for Kc = 1

Task: Calculating the System Output for Kc = 2

Task: Calculating the System Output for Kc = 4

Task: Calculating the System Output for Kc = 10

Activity 14: Controlling the Level System Using Proportional Control

Review of On-Off Control of the Level System Proportional Control of the Level System Task: Controlling the Level System Using Proportional Control Task: Recording the Experiment Results Task: Controlling the Level System for a New Value of Kc Task: Recording the Experiment Results Results and Conclusions Task: Controlling the Level System with Proportional Control Task: Recording the Experiment Results Results and Conclusions Task: Recording the Experiment Results Results and Conclusions Task: Recording the Experiment Results Results and Conclusions

Results and Conclusions

Activity 15: Proportional Integral Control

First Order Systems Under Proportional Control
Higher Order Systems Under Proportional Control
Integral Control
Proportional Integral Control
Task: Constructing a Graph of the Output of a PI Controller
How Integral Control Eliminates Offset
Disadvantages of PI Control
Applying Laplace Transform to PI Control

Activity 16: Controlling the Level System Using PI Control

Review of Proportional Integral Control Controlling The Level System Using PI Control Task: Controlling the Level System With Proportional Control Task: Recording the Data for Ti = 100000 Task: Controlling the Level System With Proportional Integral Control Experiment 1: Results and Conclusions Task: PI Control in the Presence of an External Load Task: Recording the Experiment Results Task: Running the Experiment With a Load Task: Recording the Experiment Results Task: Completing the Experiments Experiment 2: Results and Conclusions

Activity 17: PID Control

Review of Proportional Control Review of Proportional Integral Control Derivative Control Advantages of Applying a Derivative Action to a PI Controller Proportional Integral Derivative Control Demonstrating PID Control Task: Investigating the Effect of Changing PID Parameters Task: The Effect of Changing the Value of Kc Task: The Effect of Changing the Value of Ti Task: The Effect of Changing the Value of Td Activity 18: Controlling the Level System Using Proportional Integral Derivative Control

Review of P and PI Control Control of Higher Order Systems Review of PIDControl Task: Controlling the ProcessMotion Level System With a PID Controller Task: Adjusting the Value of Td Results and Conclusions Task: Investigating the Effect of PID Control on a Higher Order System Task: Adjusting the Value of Kc When Using P Control Task: Adjusting the value of Ti When Using PI Control Task: Adjusting the Value of Td When Using PID Control

Activity 19: Controller Selection and Design

Designing a Control System Stage 1 Selecting an Appropriate Control Algorithm Stage 2 Determining the Correct Parameters Stage 3 Fine Tuning Setting the Parameters for a PID Control System Task: Determining the Critical Gain Value Task: Determining the Cycle Time Task: Fine Tuning the PID Controller

Activity 20: Designing Controllers for the Level System

Review of the Controller Design Process

Control Algorithms

Designing a Controller for the Level System 1

Task: Experimenting With the Controller

Task: Examining the Controller Performance

Task: Evaluating the Controller Performance

Designing a Controller for the Level System 2

Task: Testing the Controller

Task: Examining the Controller Performance

Task: Evaluating the Controller Performance

Experimentation Results

Task: Testing the Controller Under the Maximum Load

Task: Examining the Controller Performance

Designing a Controller for the Level System 3

Task: Testing the Controller

Task: Examining the Controller Performance

Experimentation Results

Post-test