intelitek≫

Fundamentals of Robotics

COURSE OUTLINE

Catalogue Number	5005-0000
Category	Industrial Robotics
Duration	15 Hours
Additional Content with Hardware Package	10 Hours
Software Supplied	RoboCell Robotic Simulation Software
Additional Software	MotoSimEG-VRC

Inter a construction of the second second

Course Introduction

Activity 1: Introduction to Robotics

What is a Robot?

History of the Industrial Robot

Applications of Industrial Robots

Flexible Manufacturing Systems

Activity 2: How Robots Work

Robotic System Components

Types of Robot Joints

Types of Robots

Robotic Control Systems

Programming Language: RoboCell Robotic Software

The Programming Pendant

Activity 3A: Using Robotic Simulation Software: Part 1

Simulation Software

Task: Running RoboCell and Opening a Project

RoboCell Window Components

3D Image Window

Task: Adjusting the View of the Robot Workcell

Fundamentals of Robotics Course Outline

Activity 3B: Using Robotic Simulation Software: Part 2

Running Programs Task: Running a Sample Program Manipulating the Robot Task: Robot Working Limits

Lab Activity A: Getting Started

Activity 4: Recording Robot Positions

Homing

Task: Running RoboCell and Opening a Project

Recording Positions

Executing Movements

Joint Coordinate System

Cartesian Coordinate System

Jog Control Window

Task: Manipulating the Robot in the XYZ Coordinate System

Encoders and the Data Dashboard

Lab Activity B: Teaching a Job

Lab Activity C: Linear & Circular Motion

Activity 5: Programming a Simple Pick and Place Task

Record and Teach Commands Task: Running RoboCell and Opening a Project Moving a Cube by Recording Four Positions Task: Recording and Teaching Positions Programming Tools Task: Writing a Simple Robot Program Task: Saving a Robot Project Task: Running a Robot Program

Lab Activity D: Position Variables

Lab Activity E: Operating the Gripper

Activity 6: Basic Robotic Programming Tools

RoboCell Program Structure Object Inspection Task Task: Recording Positions Task: Programming Task: Adding Remarks to a Program The Set Variable Task: Adding Variables to a Program Debugging Commands Task: Adding Debugging Tools and Delays to a Program Making Commands Non-Executable Task: Making Ring Bell Commands Non-Executable

Lab Activity F: The Control Sub-menu

Lab Activity G: General Administration

Activity 7: Block Alignment Project

Aligning a Block Task: Recording Positions Task: Programming Task: Running and Evaluating the Program Task: Programming a Continuous Cycle

Lab Activity H: Tool Coordinates

Activity 8: Feeders and Templates

Introduction to Feeders and Templates Using a Feeder and Template in a Production Process Task: Running RoboCell Task: Recording Positions Turning Outputs On and Off Task: Programming and Running the Program Task: Using a Template to Move Parts in a Workcell

3

Fundamentals of Robotics | Course Outline

Lab Activity I: Interference Areas

Activity 9: Roll, Pitch, and Yaw

Degrees of Freedom Task: Running RoboCell and Loading the Project Adjusting the Roll Task: Modifying Rx, Ry and Rz Task: Running the Program

Lab Activity J: User Coordinates

Activity 10: Programming the Robot to Execute Linear Movements

Robot Machine Operators Task: Recording Two End Positions and Running the Program Controlling the Robot Trajectory Task: Recording a Middle Position Linear Movement Task: Observing the Effects of the Go Linear Command Task: Observing the Encoder Values for a Linear Trajectory

Activity 11: Programming the Robot to Execute Circular Movements

Controlling the Robot Trajectory Using the Go Linear to Position and Go Circular to Position Task: Recording Positions to Write the Letter B Task: Programming the Robot to Write B Task: Running the Program

Lab Activity K: Position Level

Activity 12: Final Project: Drawing a House

Drawing a House Task: Recording Positions Task: Programming the Robot to Draw a House Task: Running and Evaluating the Program Challenge Task: Programming and Running the Challenge

Fundamentals of Robotics Course Outline

Additional Practice (Hardware Optional)

Sample Activities for Programming

Conclusion

The Structure and Relationship of Jobs

Master Jobs

Collision Detection

Introduction to the Practical Exam

Practical Exam